Convergence in $$\varvec{p}$$ p -Mean for Arrays of Random Variables
نویسندگان
چکیده
منابع مشابه
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables
The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).
متن کاملFuzzy Confidence Intervals for Mean of Fuzzy Random Variables
This article has no abstract.
متن کاملOn the LP-convergence for multidimensional arrays of random variables
Let Z+, where d is an integer, denote the positive integer d-dimensional lattice points. The notation m≺ n, where m= (m1,m2, . . . ,md) and n= (n1,n2, . . . ,nd) ∈ Z+, means that mi ≤ ni, 1 ≤ i≤ d, |n| is used for ∏d i=1ni. Gut [2] proved that if {X ,Xn, n∈ Z+} is a d-dimensional array of i.i.d. random variables with E|X|p <∞ (0 < p < 2) and EX = 0 if 1 ≤ p < 2, then ∑ j≺nXj |n|1/p −→ 0 in L p ...
متن کاملOn complete convergence for arrays of rowwise dependent random variables
This paper establishes two results for complete convergence in the law of large numbers for arrays under %-mixing and ~ %-mixing association in rows. They extend several known results. AMS classi cation: 60F15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2019
ISSN: 1422-6383,1420-9012
DOI: 10.1007/s00025-019-0959-1